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Abstract

The goal of subspace learning is to find a k-dimensional subspace of Rd, such that the expected
squared distance between instance vectors and the subspace is as small as possible. In this paper
we study subspace learning in a partial information setting, in which the learner can only observe
r ≤ d attributes from each instance vector. We propose several efficient algorithms for this task,
and analyze their sample complexity.

Keywords: principal components analysis, budgeted learning, statistical learning, learning with
partial information, learning theory

1. Introduction

Subspace learning is a dimensionality reduction technique in a variety of applications such as face
recognition (Yang et al., 2004), image compression (Du and Fowler, 2007), and document classifi-
cation (Papadimitriou et al., 1998). Recently, there has been growing interest in subspace learning
from partially observed data (e.g., (Chen et al., 2013; Wang and Poor, 1998; Chi et al., 2013)). As
motivation, consider the scenario of subspace learning from corrupted data. As discussed in Chen
et al. (2013), data corruption may cause some (or even most) of the attributes to be missing. An-
other typical scenario is subspace learning from multiple sources. Many applications (e.g., wireless
sensor networks (Chi et al., 2013)) rely on data which is collected from multiple sources (e.g., sen-
sors). When the data dimension is high, it may be impossible or prohibitively expensive to collect
every data entry from every source. Note that in the first scenario, we have no control over which
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attributes are missing, while in the second one a learner may actively choose which attributes to
observe.

The subspace learning problem is formally defined as follows. Let X be a subset of the Eu-
clidean unit ball in Rd, and let P be some unknown distribution over X . Our goal is to find a rank-k
projection matrix Π ∈ Rd×d such that the expected squared distance, Ex∼P [‖x−Πx‖22], is as small
as possible.

When X is a finite set and P is the uniform distribution over X , the optimal solution to
the subspace learning problem is given by the Principal Component Analysis (PCA) algorithm,
which returns the projection matrix that corresponds to the k leading eigenvectors of the matrix

1
|X |
∑

x∈X xx
>. In the more general stochastic optimization setting of subspace learning, X is not

restricted to be a finite set, P is an arbitrary distribution over X , and the information given to the
learner has the form of an i.i.d. training sequence (x1, . . . , xm) ∼ Pm.

In the usual full information setting of subspace learning, the learner has access to all attributes
of the sampled vectors. In this paper, we consider subspace learning in a partial information setting,
in which only a subset of indices from each vector can be observed. Inspired by the two applications
presented above, we study two variants of this problem, which will be named the passive setting,
and the active setting, respectively. In the passive setting, we assume that each attribute is observed
with probability p = r/d (r ≤ d). Therefore, the expected number of observed attributes from
each vector is r. In the active setting, the learner can choose (possibly at random) r attributes to
be revealed. The sample complexity of a subspace learning algorithm is defined as the number
of samples that are needed by the algorithm in order to find a projection matrix Π with expected
squared distance, Ex∼P [‖x−Πx‖22], of at most ε more than the optimal expected squared distance.
The sample complexity for each of the models is defined as the minimal sample complexity attained
by any algorithm. In this paper we propose efficient algorithms for both settings and analyze their
sample complexity. We also provide several lower bounds on the sample complexity that can be
attained by any algorithm.

1.1 Our Contribution

Our first observation is that subspace learning (in both the passive and active models) using r = 1
attributes is impossible. Consider the task of learning a 1-dimensional subspace (a line) in R2 (see
Figure 1). Let u1 = (α, α) , u2 = (−α, α). Denote by P1 the uniform distribution over {u1,−u1},
and by P2 be the uniform distribution over {u2,−u2}. Suppose that the actual distribution P is
chosen uniformly at random from {P1, P2}. The task of subspace learning in this case amounts to
distinguishing between P1 and P2. However, since each single coordinate is distributed uniformly
over {−α, α}, the learner does not obtain any information from a single observation, and hence
cannot identify the right subspace.

For the case 2 ≤ r ≤ d we propose two efficient algorithms, named Partially Observed PCA
(Section 2.1) and Matrix Bandit Exponentiated Gradient (Section 3.1), which are designed for the
passive and active models, respectively.

Partially Observed PCA (POPCA) is an extension of the PCA algorithm. Denote the population
covariance matrix E[xx>] by C. The optimal projection matrix, denoted Π?, is the projection
onto the subspace that is spanned by the k leading eigenvectors of C. An ERM (empirical risk
minimizer, i.e., an algorithm that minimizes the empirical loss) for the full information setting is
given by PCA which returns the projection matrix corresponding to the k leading eigenvectors of
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Figure 1: Impossibility of subspace learning using r = 1 observed attributes. The distribution of
the observed attribute is identical for (a) and for (b), therefore they are indistinguishable.

the matrix m−1
∑m

i=1 xix
>
i (whose expected value is C). Similarly, the POPCA algorithm uses

the random observations in order to construct an estimate Ĉ of C, and approximates Π? using the
projection matrix onto the k leading eigenvectors of Ĉ. We analyze the sample complexity of this
algorithm, showing (see Corollary 3) that it is bounded from above by (d/r)2 k

ε2
.

In the full information setting, the sample complexity is known to be O(k/ε2) (This bounds
coincides with our bound when r = d). Hence, the (multiplicative) price of partial information,
that is, how many more examples we need in order to compensate for the lack of full information
on each individual example, is O((d/r)2). It is interesting to understand whether a lower price can
be achieved. In Theorem 4 we prove that the sample complexity of every algorithm in the passive
model is Ω

(
(d/r)2 k

ε2

)
. The optimality of POPCA in the passive mode is thus established. Another

appealing property of POPCA is that, in terms of computational complexity, the challenge of partial
information does not incur any additional cost; While the sample complexity grows as r decreases,
the runtime per iteration decreases by the same order.

Next, we investigate the active model and ask whether the price of partial information can be
reduced due to the ability of the learner to actively choose the observed attributes. Intuitively, one
may hope that the learning process would reveal some useful information that can be utilized while
choosing which coordinates to observe. Our second algorithm, called Matrix Bandit Exponentiated
Gradient (MBEG), exploits the active setting by maintaining a “weight matrix” which is updated
with every observation, and induces a non-uniform attribute sampling distribution. For MBEG,
we derive an upper bound of max

{
8k · d+r

r ·
k
ε2
, d4r

2(d+r)

}
· log(d) (see Theorem 7) on the sample

complexity. We note that if ε is small enough, then the right term in the bound becomes irrelevant,
and thus a linear dependence on d/r is obtained (for a detailed comparison, see Section 3.2). The
(almost trivial) fact that every subspace learner, even in the active model, must have a sample com-
plexity that grows linearly with d/r is proved in Appendix C. Hence, the dependence of MBEG on
d/r is optimal, in the regime where ε is small.

The results in the active model immediately lead to the following question: Can we attain a
linear price for partial information in the active model, independently of the required accuracy? We
discuss possible directions for tackling this question in Section 4.
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1.2 Related Work

In the full information setting, it has been shown by Shawe-Taylor et al. (2005) and Blanchard et al.
(2007) that the optimal sample complexity of subspace learning is at most O(k/ε2), and this upper
bound is achievable by applying PCA on i.i.d. samples according to the distribution P . A similar
result is obtained by applying the Stochastic Gradient Descent algorithm (Arora et al., 2013).

Subspace learning in the partial information setting has been studied in Chi et al. (2013), where
an algorithm named PETRELS is proposed. However, no formal guarantees are derived for this
method. The setting in Mitliagkas et al. (2014) is similar to our passive setting, but they assume that
the distribution that generates the instance vectors is Gaussian.

A closely related problem to the task of subspace learning (in the passive setting) is the approx-
imation of the covariance matrix using partially observed attributes. We discusses this relation in
Section 2.2.

One possible way to tackle the challenge of subspace learning with partial information is based
on the matrix completion method. For example, we may think of the partially observed examples as
a data matrix with unobserved entries. Then, one could first fill in the missing entries using a matrix
completion technique (e.g., as described in Candès and Recht (2009)), and then apply PCA to the
data matrix. We note that this approach may work1 provided that the average number of observed
attributes per example is sufficiently large. More precisely, according to the main result of Candès
and Recht (2009), the number of observed attributes per example (column of the data matrix) should
scale with the rank of the data matrix (which may be large as d). In contrast, our focus in this paper
is on methods that work even when the number of observed attributes per example is much smaller
(two attributes per instance suffice).

The active setting resembles the setting of the multi-armed bandit problem (Auer et al., 2002),
in which the learner obtains limited feedback at each time, namely, it receives only the reward of
the chosen arm. The challenge of learning linear predictors in Rd with partially observed attributes
(e.g., as in Cesa-Bianchi et al. (2011)) may be seen as an extension of this problem. One of the most
significant challenges in this work is to adapt the technique used in the vector setting (e.g., those
employed by the Exp3 algorithm of Auer et al. (2002)) to the corresponding matrix setting. We
already observed one difference: While a single arm suffices in the vector case, subspace learning
with r = 1 attributes is impossible.

Our MBEG algorithm can be seen as an extension of the Online PCA algorithm of Warmuth
and Kuzmin (2008) (see also Nie et al. (2013)) to the partial information setting. Similarly to their
approach, MBEG maintains a weight matrix which induces a probability distribution over projection
matrices. In MBEG, this weight matrix also induces a distribution over which attributes to observe.

2. The Passive Setting

We begin by investigating the passive setting. We start by describing an algorithm for this case. We
then analyze its sample complexity, and discuss its implementation.

2.1 Partially Observed Principal Component Analysis (POPCA)

In this section we describe the POPCA algorithm. We start by reviewing the definition of the loss
function and characterizing the minimizer of the loss.

1. Under some additional assumptions on the data such as the incoherence assumption made in Candès and Recht (2009)
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Denote the set of projection matrices from Rd onto Rk by Pdk . Since Π2 = Π for any Π ∈ Pdk ,
the loss of a projection matrix Π ∈ Pdk can be expressed as

L(Π) = E‖x−Πx‖22 = E
[
‖x‖22 − 2x>Πx+ x>Π>Πx

]
= E

[
‖x‖22 − x>Πx

]
, (1)

Define the inner product of matrices A,B by 〈A,B〉 = tr(A>B). We can further rewrite the loss
as

L(Π) = E
[
‖x‖22 − 〈Π, xx>〉

]
= E

[
‖x‖22

]
− E

[
〈Π, xx>〉

]
= E

[
‖x‖22

]
− 〈Π, E[xx>]〉 .

Denote the covariance matrix E[xx>] by C. Since ‖x‖22 does not depend on Π, the goal of subspace
learning is equivalent to finding a projection matrix Π such that

〈Π,−C〉 ≤ min
Π′∈Pd

k

〈Π′,−C〉+ ε . (2)

It is well-known that the rank-k matrix which minimizes the expression 〈Π′,−C〉 is the matrix∑k
i=1 viv

>
i , where v1, . . . , vk are the leading eigenvectors of C. The PCA approach for sub-

space learning in the full information setting replaces C with C(S) = 1
m

∑m
i=1 xix

>
i , where

S = (x1, . . . , xm) is an i.i.d. training sequence drawn according to the distribution P . Clearly,
E[C(S)] = C. In our case, we will construct an unbiased estimate of C based on partially observed
examples, as detailed below.

Consider an instance vector x ∼ P and let x̂ be the observed vector. According to our assump-
tions, for each i ∈ [d], the i-th coordinate of x̂ satisfies

x̂i =

{
xi w.p. r/d
0 w.p. 1− r/d .

(3)

Denote p = r/d. Similarly to Mitliagkas et al. (2014), we form the estimate

Ĉx̂ =
1

p2
x̂x̂> +

(
1

p
− 1

p2

)
diag(x̂x̂>) . (4)

Indeed, it is easy to verify that Ĉx̂ forms an unbiased estimate of C:

E

[(
1

p2
x̂x̂>

)
i,j

]
=

{
1
p E[x2

i ] i = j

E[xixj ] i 6= j ,

and

E
[(

1

p
− 1

p2

)
diag(x̂x̂>)i,j

]
=

{
E[x2

i ]− 1
p E[x2

i ] i = j

0 i 6= j .

Summing the corresponding entries, we see that E[(Ĉx̂)i,j ] = Ex∼P [xixj ] = Ci,j . Therefore,
E[Ĉx̂] = C.

The POPCA algorithm (see Algorithm 1) assumes access to m i.i.d. vectors sampled according
to P . For each instance vector, it forms an estimate according to 4. By averaging these m estimates
we obtain Ĉ. The returned projection corresponds to the k leading eigenvectors of Ĉ.
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Algorithm 1 POPCA
Input: r, k ≤ d
Ĉ = 0 ∈ Rd×d
for i = 1 to m do

Let xi ∼ P and let x̂i be the observed vector
Ĉx̂i = d2

r2
x̂ix̂
>
i +

(
d
r −

d2

r2

)
diag(x̂ix̂

>
i )

Ĉ = Ĉ + 1
m Ĉx̂i

end for
Compute the eigendecomposition Ĉ =

∑d
j=1 λjvjv

>
j

Assuming λ1 ≥ . . . ≥ λd, return Π̂ =
∑k

j=1 vjv
>
j

2.2 Analysis of POPCA

The following lemma relates the success of Algorithm 1 to the quality of the estimation Ĉ of the
covariance matrix C.

Lemma 1 Suppose that the final estimate Ĉ of POPCA satisfies

E[‖C − Ĉ‖F ] ≤ ε/
√
k . (5)

Then, the resulting projection matrix Π̂ satisfies the desired bound

E[〈Π̂,−C〉] ≤ min
Π′∈Pd

k

〈Π′,−C〉+ ε .

Proof Using the Cauchy-Schwarz inequality, we get

E[ sup
Π∈Pd

k

〈Π,−C〉 − 〈Π,−Ĉ〉] ≤ E[ sup
Π∈Pd

k

‖Π‖F ‖Ĉ − C‖F ]

≤ sup
Π∈Pd

k

‖Π‖F E[‖Ĉ − C‖F ]

≤
√
k · ε/

√
k

= ε .

Consequently, since Π̂ = argminΠ∈Pd
k
〈Π,−Ĉ〉, we have

E[〈Π̂,−C〉 − 〈Π?,−C〉] = E[〈Π̂,−C〉 − 〈Π?,−Ĉ〉]
≤ E[〈Π̂,−Ĉ〉 − 〈Π?,−Ĉ〉] + ε

≤ ε ,

which completes the proof.

In view of Lemma 1, obtaining upper bound on the sample complexity of POPCA reduces to analyz-
ing the quality of the covariance estimation. A fairly vast body of literature exists on the latter task
in the full-information scenario, and several results are known in the case of missing entries. For
example, Lounici (2014) considered a setting similar to our passive setting. Corollary 1 in Lounici
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(2014) gives a bound on the Frobenius error that depends on the spectral decay of C. We will derive
a slightly different (worst-case) bound under the assumption that the instances are bounded in the
Euclidean unit ball. A comparison between the two bounds is given Appendix E.

Lemma 2 Let ε ∈ (0, 1). If m ≥
⌈
(d/r)2 · k

ε2

⌉
, then

E[‖C − Ĉ‖F ] ≤ ε/
√
k .

Proof Using Jensen’s inequality, we have

E[‖Ĉ − C‖F ] = E[(‖Ĉ − C‖2F )1/2] ≤ (E[‖Ĉ − C‖2F ])1/2 .

Since the observations are i.i.d.,

E[‖Ĉ − C‖2F ] =
∑
i,j

Var[Ĉi,j ] =
∑
i,j

Var

(1/m)

m∑
q=1

Ĉx̂q ,i,j


=

1

m

∑
i,j

Var[Ĉx̂1,i,j ] ≤
1

m

∑
i,j

E[Ĉ2
x̂1,i,j ] ,

where Ĉx̂q ,i,j is the [i, j]-th entry of Ĉq. Denote x̂ = x̂1 and x = x1 (subscript indices will now
correspond to the entries of these vectors). According to 4,

E[Ĉ2
x̂,i,j |x] =

{
p−4 E[x̂2

i x̂
2
j |x] = p−2x2

ix
2
j i 6= j

p−2 E[x̂4
i |x] = p−1x4

i ≤ p−2x4
i i = j

.

Therefore, since the `2 norm of the instances is at most 1, we have∑
i,j

E[Ĉ2
x̂1,i,j |x] ≤ p−2

∑
i,j

x2
ix

2
j = p−2‖x‖4 ≤ p−2 =

d2

r2
,

and
∑

i,j E[Ĉ2
x̂1,i,j

] ≤ d2

r2
. Combining the above bounds, we obtain

E[‖Ĉ − C‖F ] ≤ 1√
m
· d
r
.

For m ≥
⌈
d2

r2
· k
ε2

⌉
, we arrive at the claimed bound.

Let mp(d, k, r, ε) be the sample complexity of subspace learning in the passive partial information
model, namely, how many examples are needed (for the optimal learner) to guarantee that (2) holds.
Based on Lemma 2 and Lemma 1, we now conclude the following bound on the sample complexity.

Corollary 3 Using POPCA (Algorithm 1), we have the following bound on the sample complexity
for any integer r ≥ 2:

mp(d, k, r, ε) ≤
⌈

(d/r)2 · k
ε2

⌉
.
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2.3 Optimality of POPCA

In this section we prove the following lower bound on the sample complexity of subspace learning
with partial information in the passive model.

Theorem 4 Assume that k ≤ d/2 and ε ∈ (0, 1/128). The sample complexity in the passive model
is at least Ω

(
(d/r)2 · k

ε2

)
. Therefore, we have

mp(d, k, r, ε) = Θ

(
(d/r)2 · k

ε2

)
.

Note that up to a constant factor, our lower bound coincides with the upper bound obtained by
POPCA (Corollary 3). Therefore, Theorem 4 establishes the optimality of POPCA in the passive
model.

The proof of Theorem 4 is divided into two parts. First, in Theorem 5 we prove that the sample
complexity in the full-information setting is at least Ω(k/ε2). Then, we complete the proof of
Theorem 4 by showing that the multiplicative price of partial information is at least Ω((d/r)2).

Theorem 5 Assume that k ≤ d/2 and let ε ∈ (0, 1/128). The sample complexity of subspace
learning with full information is bounded below by

m(d, k, r = d, ε) = Ω(k/ε2) .

We now sketch the proof of Theorem 5. A detailed proof is provided in Appendix A.
Proof (sketch)
The idea is to reduce the problem of coin identification (see Section 5.2 in Anthony and Bartlett
(2009)) to that of subspace learning. Assume that k ≤ d/2 and ε ∈ (0, 1/128). Let U = {uj}2kj=1 ⊆
Rd be a set of 2k orthonormal vectors. A distribution over U is defined as follows. First, we draw a
sequence b = (b1, . . . , bk) ∈ {−1, 1}k uniformly at random. We associate the pair {ui, ui+k} with
a Bernoulli random variableBi with parameter pi = 1+biα

2 , where α = 16ε. To define a distribution
P := Pb, we now describe the process of drawing an instance x ∼ P :

1. An integer i ∈ [k] is chosen uniformly at random.

2. The i-th coin is flipped (according to pi). Denote the corresponding random variable by Z.

3. If Z = 1, then x is chosen uniformly at random from the set {ui,−ui}. Otherwise (Z = 0),
x is chosen uniformly at random from the set {ui+k,−ui+k}.

In Lemma 10 we show that a successful subspace learner must identify the bias of “most” of the
coins. Thus, we can reduce k independent tasks of coin identification to the task of subspace
learning. A well-known result in statistics (Anthony and Bartlett, 2009)[Lemma 5.1] tells us that
Ω(1/α2) samples are needed to identify a coin with bias α. Hence, each of the pairs must be ob-
served Ω(1/ε2) times.

Proof (of Theorem 4) Consider the construction presented in the proof (sketch) of Theorem 5.
We next specify the set U and prove that the price of partial information in the passive model is
Ω(d2/r2). Consequently, this will conclude the proof of Theorem 4.
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For every i ∈ [k], let ui =
√

2
2 (ei + ei+k), ui+k =

√
2

2 (−ei + ei+k). To specify a distribution
P , fix a vector b = (b1, . . . , bk) ∈ {−1, 1}k. Consider now a single interaction between the learner
and the environment. A vector x is drawn according to P as described in the proof (sketch) of
Theorem 5. Let i ∈ [k] denote the index of the coin which is associated with x. As we observed
in Section 1, each of the coordinates i, i + k is distributed uniformly over {−

√
2

2 ,
√

2
2 }. Hence, to

obtain any information, the learner must observe both of the coordinates i and i+ k. The probabil-
ity that both coordinates are observed is at most O(r2/d2). Hence, in expectation, (only) a single
“meaningful” observation is obtained every Ω(d2/r2) iterations. Therefore, the price of partial in-
formation is Ω(d2/r2).

2.4 Implementation of POPCA

As we discussed above, when the data is fully visible, the sample complexity of the PCA algorithm
(which computes the k leading eigenvectors of the empirical covariance matrix, m−1

∑m
i=1 xix

>
i ,

and returns the corresponding projection matrix) is mf := O(k/ε2). When the number of samples,
mf , is larger than the dimension, a standard implementation of this algorithm costs O(mfd

2). We
next show that POPCA has a similar runtime.

We established above that POPCA requires a training set of size O((d/r)2mf ). Consider a
single iteration of POPCA. Note that the construction of Ĉx̂i (see 4) costs O(r2). Therefore, it costs
O(mfd

2) to obtain the average of the estimates, Ĉ. The computation of the SVD of Ĉ costs O(d3).
Therefore, when mf ≥ d, the overall runtime of POPCA is indeed O(mfd

2).

3. The Active Setting

We now consider the active model of subspace learning with partial information. In particular, we
will present and analyze the Matrix Bandit Exponentiated Gradient (MBEG) algorithm.

Before describing MBEG, it should be noticed that POPCA (along with its analysis) can be
modified to fit the active model; An active version of POPCA simply selects the r observed attributes
uniformly at random (with replacement) and then proceeds similarly to POPCA2. It is not hard
to verify that the sample complexity of this algorithm is asymptotically equivalent to the sample
complexity of POPCA. In particular, the price of partial information is quadratic in d/r.

The main differences between MBEG and POPCA are as follows:

1. MBEG is designed for the active model. It employs a non-uniform sampling method which
gives higher priority to “stronger” directions.

2. MBEG is an iterative algorithm which maintains a weight matrix that belongs to the convex
hull of the set Pdk of projection matrices. It can be thought of as a Bandit version of the
extension of the Exponentiated Gradient (EG) algorithm to matrices. The EG algorithm, and
its extension to matrices are due to Kivinen and Warmuth (1997), and Tsuda et al. (2005),
respectively.

2. Note that here the attributes are no longer independent and therefore we should replace the weights in the definition
of Ĉx̂.

9
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3.1 Matrix Bandit Exponentiated Gradient (MBEG)

3.1.1 CONVEXIFICATION

In order to be able to apply the Matrix EG algorithm, we first need to formulate our task as a
convex optimization problem. Recall that our problem is equivalent to approximately minimizing
the objective argminΠ∈Pd

k
〈Π,−C〉, where C = E[xx>]. The objective is linear and thus convex.

We will replace the non-convex set Pdk with its convex hull, Cdk := conv(Pdk ). Note that for everyW
in Cdk , the gradient is given by −C. Therefore, the EG procedure would start with some W1 ∈ Cdk ,
and, at iteration i, would update according to

1. Ui+1 = exp(log(Wi) + ηC)

2. Wi+1 = argmin
W∈Cdk

DR(W,Ui+1) , (6)

where D(R,U) = tr(W logW − W logU − W + U) is the Bregman divergence induced by
the quantum entropy regularizer, R(W ) = tr(W logW −W ). Additional details regarding this
regualarizer can be found in Tsuda et al. (2005) and Warmuth and Kuzmin (2008). As in POPCA,
the gradient C is unknown but can be estimated. We would like to exploit the active setting, and
therefore, we will employ a non-uniform sampling method which relies on the current weight matrix
Wt (see Section 3.1.2).

Next, we recall that the output of the algorithm should be a projection matrix, while our algo-
rithm maintains weight matrices, which may not belong to the setPdk . Therefore, the final step of the
algorithm is to construct an element from Pdk that performs “similarly” to the average of the weight
matrices maintained during the run of the algorithm. For this purpose, we rely on the following
lemma, due to Warmuth and Kuzmin (2008):

Lemma 6 Every matrix W ∈ Cdk can be decomposed in time O(d3) into a convex combination of
at most d elements from Pdk .

For completeness, we recall the decomposition procedure of Warmuth and Kuzmin (2008) in Ap-
pendix D. Getting back to our algorithm, let Ŵ = 1

m

∑m
i=1Wi be the average weight matrix, and

denote by Ŵ =
∑d

j=1 βjΠj a decomposition of Ŵ into a convex combination of elements from
Pdk . The final step of MBEG sets the output matrix Π̂ to be Πj with probability βj . This guarantees
that the expected performance of Π̂ is the same as the performance of Ŵ .

3.1.2 PRIORITIZING “STRONGER” DIRECTIONS

In this part we present the non-uniform sampling mechanism which is employed by MBEG for
attribute sampling. We first consider the case r = 2. Let W := Wi be a weight matrix obtained
during the run of MBEG. Recall3 that

∑
iWi,i = k, and for every i ∈ [d], Wi,i ∈ [0, 1]. Therefore,

a natural distribution for attribute sampling is to choose each pair (s, q) ∈ [d]2 with probability
ps,q =

Ws,s

k · Wq,q

k . Unfortunately, we were not able to obtain a good bound using this sampling
technique. Instead, we pick attributes according to

ps,q = (1− α)
Ws,s +Wq,q

2dk
+
α

d2
, (7)

3. These properties clearly hold for projection matrices, and thus hold for any convex combination of projection matri-
ces.

10
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for some parameter α ∈ (0, 1/2), which is tuned below. That is, we mix a uniform distribution
over [d]2, with a distribution which gives higher sampling probability to pairs for which Ws,s,Wq,q

are high, reflecting a bias toward sampling from “stronger” directions. Mixing with the uniform
distribution guarantees that every pair has large enough probability to be sampled, which will later
help us ensure that we perform enough “exploration”.

Based on this probability distribution over pairs, we define an unbiased estimate of the matrix
C by

Ĉ =
1

2ps,q
xsxq(Es,q + Eq,s) , (8)

where Es,q is the all zeros matrix except 1 in the i, j coordinate.
The extension of MBEG to any (even) r > 2 is straightforward. We simply pick r/2 in-

dependent estimates Ĉ1, . . . , Ĉr/2, each of which is constructed as in the case r = 2, and set

Ĉ = 2
r

∑r/2
j=1 Ĉj .

The algorithm is summarized in Algorithm 2. As explained in Tsuda et al. (2005), the projection
step w.r.t. the Bregman divergence, Wi+1 = argminW∈Cdk

DR(W,Ui+1) can be performed in time
O(d3). Overall, the running time per iteration is O(d3).

Algorithm 2 Matrix Bandit Exponentiated Gradient

Input: r, k < d (r mod 2 = 0)

η =
√

r log(d)
2m(d+r)

α = ηd2 (we assume that m is large enough so that α ≤ 1/2)
W1 = k

dI
for i = 1 to m do

denote W = Wi

for j = 1 to r/2 do
pick (s, q) ∈ [d]2 with probability ps,q = (1− α)

Ws,s+Wq,q

2dk + α
d2

for x ∼ P , let (xs, xq) be the corresponding attributes
Ĉi,j = 1

2ps,q
xsxq(Es,q + Eq,s)

end for
Ĉi = 2

r

∑r/2
j=1 Ĉi,j

Ui+1 = exp(log(W ) + ηĈi)
Wi+1 = argminW∈Cdk

DR(W,Ui+1)
end for
Ŵ = 1

m

∑m
i=1Wi

decompose Ŵ into Ŵ =
∑d

j=1 βjΠj using Algorithm 3
return Π̂ = Πj with probability βj

3.1.3 ANALYSIS OF MBEG

Let ma(d, k, r, ε) be the sample complexity of subspace learning in the active partial information
model. We denote the Frobenius norm, the spectral norm, and the trace norm by ‖ · ‖F , ‖ · ‖sp, and
‖ · ‖tr, respectively. Throughout this section we prove the following result.

11



GONEN, ROSENBAUM, ELDAR AND SHALEV-SHWARTZ

Theorem 7 Using MBEG (Algorithm 2), we have the following bound on the sample complexity
for any (even) integer r ≥ 2:

ma(d, k, r, ε) ≤ max

{
8k · d+ r

r
· k
ε2
,

2d4r

d+ r

}
· log(d) .

In order to prove Theorem 7, we next apply the general analysis of Matrix EG (Hazan et al.,
2012)[Theorem 13] to our case.

Theorem 8 Assume that the sequence Ĉ1, . . . , Ĉm obtained during the run of MBEG satisfies
‖Ĉi‖sp ≤ 1/η for every i ∈ [m]. Then, for every Π? ∈ Pdk ,

m∑
i=1

〈Wi −Π?,−Ĉi〉 ≤
k log(d)

η
+ η

m∑
i=1

〈Wi, Ĉ
2
i 〉 . (9)

The right-most term in 9 can be thought as the variance which is associated with the estimation
process of MBEG. We now show that in contrast to POPCA, the variance scales only linearly with
d/r.

Lemma 9 For any matrix Wi ∈ Cdk maintained by MBEG at time i, denote the conditional expec-
tation given Wi by Ei. Then,

Ei 〈Wi, Ĉ
2
i 〉 ≤

2k(d+ r)

r
.

We now prove the lemma while assuming that r = 2. The extension to any r > 2 is detailed in
Appendix B.
Proof Let W = Wi, Ĉ = Ĉi. Then,

Ei 〈W, Ĉ2〉 =
∑

(s,q)∈[d]2

ps,q(Ws,s +Wq,q)
1

4p2
s,q

x2
sx

2
q

=
∑

(s,q)∈[d]2

(Ws,s +Wq,q)

4ps,q
x2
sx

2
q .

Since α ∈ (0, 1/2), we have

Ws,s +Wq,q

ps,q
=

Ws,s +Wq,q

(1− α)
Ws,s+Wq,q

2dk + α/d2
≤ Ws,s +Wq,q

(1− α)
Ws,s+Wq,q

2dk

≤ 4dk .

Therefore, since r = 2, we obtain

Ei 〈W, Ĉ2〉 ≤ dk
∑

(s,q)∈[d]2

x2
sx

2
q ≤ dk <

2k(d+ r)

r
,

completing the proof of the lemma.

12
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Proof (of Theorem 7) By definition of Ĉi,j we have that Ĉ2
i,j = Ĉi,jĈ

>
i,j is a diagonal matrix

with all elements on the diagonal equal to zero except the (s, s) and (q, q) elements, which are both

bounded above by x2sx
2
q

p2s,q
. It follows that

‖Ĉi,j‖sp ≤
|xsxq|
ps,q

≤ 1

ps,q
≤ d2

α
=

1

η
.

Hence,

‖Ĉi‖sp ≤
2

r

r/2∑
j=1

‖Ĉi,j‖sp ≤
2

r

r

2

1

η
=

1

η
.

Therefore, the conditions of Theorem 8 hold. Taking expectation over 9, we obtain

m∑
i=1

E 〈Wi −Π?,−Ĉi〉 ≤
k log(d)

η
+ η

m∑
i=1

E 〈Wi, Ĉ
2
i 〉 . (10)

Let Ei denote the conditional expectation given Wi. Then, Ei[Ĉi] = C and therefore, by the
law of total expectation,

E 〈Wi −Π?,−Ĉi〉 = E〈Wi −Π?,−C〉 . (11)

Combining 11 with Lemma 9, and plugging into 10, we obtain that

E
m∑
i=1

〈Wi −Π?,−C〉 ≤ k log(d)

η
+ ηm

2k(d+ r)

r
.

Dividing by m, denoting Ŵ = 1
m

∑m
i=1Wi, substituting η =

√
r log(d)

2(d+r)m , rearranging terms, and

observing that E[Π̂|Ŵ ] = Ŵ , we have that

E 〈Π̂−Π?,−C〉 = 〈E [Ŵ ]−Π?,−C〉 ≤
√

8k2(d+ r) log(d)

rm
.

The right-hand side of the above is smaller than ε if m ≥ 8k log(d) · d+r
r ·

k
ε2

. Note, however, that
we also require that m is large enough so that α ≤ 1/2. Since α = ηd2, it follows that m should
also satisfy m ≥ 2d4r log(d)

d+r .

3.2 Comparison between the bounds in the passive and the active models

The left term in the bound of MBEG is smaller than the bound of POPCA if d2

r2
> 8k log(d) · d+r

r .
The right term in the bound of MBEG is smaller than the bound of POPCA if

ε <

√
(d+ r)k

2d2r3 log(d)
.

Hence, if both of the conditions hold, then the bound of MBEG is better than the bound of POPCA.
Also, if ε < 2(d+r)k

d2r
, then the dependence of the sample complexity of MBEG on d/r is linear.

13
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A reasonable regime in which MBEG enjoys a linear price is when r and k are constants, and
ε is proportional to 1/d. Note that in this regime, the bound of POPCA scales with d4, while the
bound of MBEG scales only with d3 (in the full-information setting, the sample complexity for this
case scales with d2). To summarize, ignoring the dependence on k (and logarithmic factors), MBEG
attains the desired linear price when ε is ‘small’.

4. Discussion

We introduced the problem of subspace learning with partial information, and considered both a
passive and active model. Our first observation was that looking at a single coordinate does not give
any information. Therefore, our algorithms look at the products of attribute pairs. Using the POPCA
algorithm for the passive model, we showed that the sample complexity is tightly characterized by
Θ((d/r)2k/ε2). Hence, the price of partial information in this case is quadratic. For the active
model we introduced the MBEG algorithm which exploits the gathered information in order to
make a better choice over which attributes to observe. We showed that if the desired accuracy ε is
small, then MBEG achieves a linear price. Since the expected number of observed attributes from
each vector is r, we can not hope for a better dependence on d/r. At this point, a natural question
arises: can we attain a linear price of partial information in the active model, independently of
the required accuracy? We conclude with an observation regarding MBEG that provides a partial
answer to this question.

Assume that ε, r and k are constants. Examining the implementation of MBEG, we note that
as long as the products, xsxq, between two consecutive observed attributes is zero, MBEG does
not change the sampling distribution (which is initially uniform) nor its current estimation of the
covariance matrix. Fix some attribute j and consider the distribution Pj which is concentrated on
ej . The probability that the product between two consecutive observed attributes is not zero is
(1/d)2. Since r is constant, only zero products are observed for at least Ω(d2) iterations, implying
the same bound on the sample complexity.

The implication of this result is that in order to achieve a linear price for any value of ε, it is
necessary to extract more information from the partial observations (e.g., take into account both the
products of attribute pairs and the single attributes). Developing such algorithms or alternatively,
tightening the lower bounds, is left for future research.

Acknowledgments

We thank the anonymous reviewers for their helpful comments. We also thank Amit Daniely for
helpful discussions. This research has been supported by ISF no 1673/14.

14



SUBSPACE LEARNING WITH PARTIAL INFORMATION

Appendix A. Proof of Theorem 5

In this section we prove Theorem 5.

A.1 The adversarial distribution

Let U = {uj}2kj=1 ⊆ Rd be a set of 2k orthonormal vectors. In the proof sketch of Theorem 5
we described a family F of distributions over the set {u,−u : u ∈ U}. Our lower bounds will
be proved to hold in expectation when choosing P ∈ F at random. According to Yao’s minimax
principle, such a result implies that the lower bound holds for some distribution in F .

A.2 A Successful Subspace Learner Is Also a Successful Coin identifier

In this part we formalize the reduction from coin identification to subspace learning. As we sketched
before, a key ingredient of our analysis of the lower bounds is the relation between subspace learn-
ing and “coin identification”. This relation is formalized next. We first need to introduce some
additional notation. To specify the distribution P ∈ F , fix a vector (b1, . . . , bk) ∈ {−1, 1}k. Let
Π̂ =

∑k
i=1 ûiû

>
i ∈ Pdk (where û1, . . . , ûk are orthonormal). For every (i, j) ∈ [k] × [2k], de-

fine θi,j = |〈ûi, uj〉| to be the covariance between ûi and uj . Next, for each j ∈ [2k], define
θ2
j =

∑k
i=1 θ

2
i,j . Also, define the set

J = {j ∈ [k] : bj = 1 ∧ θ2
j > θ2

j+k} ∪ {j ∈ [k] : bj = −1 ∧ θ2
j < θ2

j+k} . (12)

For reasons that will become apparent shortly, we name J the set of identified coins. The following
lemma asserts that a successful subspace learner must identify most of the coins.

Lemma 10 Let ε ∈ (0, 1). Assume that L(Π̂) − minΠ∈Pd
k
L(Π) ≤ ε. Let J be defined as in 12.

Then, |J |/k > 1− 2ε
α .

Proof Assume w.l.o.g. that b1 = . . . = bk = 1. Note that

E[xx>] =
1

k

k∑
j=1

(
1 + α

2
uju
>
j +

1− α
2

uj+ku
>
j+k

)
.

The optimal projection is obtained by picking the largest eigenvectors of E[xx>]. Precisely, the
optimal projection matrix is Π? =

∑k
i=1 uiu

>
i . We assume the loss function as formulated in 1.

15



GONEN, ROSENBAUM, ELDAR AND SHALEV-SHWARTZ

The loss of Π̂ is calculated as follows:

E[‖x‖22]− L(Π̂) = 〈
k∑
i=1

ûiû
>
i , E[xx>]〉

=
1

k

k∑
i=1

k∑
j=1

(
1 + α

2
〈ûiû>i , uju>j 〉+

1− α
2
〈ûiû>i , uj+ku>j+k〉

)

=
1

k

k∑
i=1

k∑
j=1

(
(1 + α)θ2

i,j

2
+

(1− α)θ2
i,j+k

2

)

=
1

k

k∑
j=1

(
(1 + α)θ2

j

2
+

(1− α)θ2
j+k

2

)

=
1

2k

2k∑
j=1

θ2
j +

α

2k

k∑
j=1

(θ2
j − θ2

j+k) . (13)

Since {uj}2kj=1 is orthonormal, for each i ∈ [k] we have
∑2k

j=1 θ
2
i,j ≤ 1. Hence,

∑2k
j=1 θ

2
j ≤ k,

so that the second-to-last term of 13 is at most 1
2 . This value is attained by Π?, and for simplicity,

we will assume that is attained by Π̂ as well. For the same reasons, for each i ∈ [k], we have∑k
j=1(θ2

i,j − θ2
i,j+k) ≤ 1. Hence,

∑k
j=1(θ2

j − θ2
j+k) ≤ k, so that the last term of 13 is at most α/2.

Once again, this value is attained by Π?. Our last observation is that if the j-th coin is not identified,
i.e., j /∈ J , then θ2

j − θ2
j+k ≤ 0. Combining these observations, we obtain that

L(Π̂)− L(Π?) ≥ α(1− |J |/k)/2 .

The proof is completed by combining the assumption that L(Π̂)− L(Π?) ≤ ε.

A.2.1 LOWER BOUND ON COIN IDENTIFICATION

We previously informally argued that Ω(1/α2) samples are needed to identify a coin with bias 1±α
2 .

If we have k such independent coins, then Ω(k/α2) are needed. Let us formalize this result.
A coin identification problem with parameter α is defined as follows. Consider a binary classifi-

cation problem with a domain [k] and label set {0, 1}. The hypothesis class is the setH = {0, 1}[k].
The underlying distribution over [k] × {0, 1} is chosen at random using the following mechanism.
The marginal distribution over [k] is uniform, and the conditional probability over the label (coin)
is determined by P (y = 1|x = j) =

1+bjα
2 , where each bj is an independent Rademacher random

variable (drawn in advance). We observe that this distribution is identical to the distribution defined
(over a shattered set of size k) in (Anthony and Bartlett, 2009, Theorem 5.2).

As usual, an algorithm for coin identification obtains an i.i.d. training sequence S according
to P , and has to return a hypothesis h ∈ H. The generalization error of h ∈ H, denoted err(h),
is defined to be the probability that it misclassifies a new generated point (x, y), i.e., err(h) =
P (h(x) 6= y). The next theorem follows from (Anthony and Bartlett, 2009, Theorem 5.2).
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Theorem 11 Let B be an algorithm for coin identification, and let ε̃ ∈ (0, 1/64). Consider a coin
identification problem with α = 8ε̃. If m < k

8ε̃2
, then there exists a distribution P for which

ES∼Pm err(B(S))−min
h∈H

err(h) > ε̃ .

A.3 Concluding the Theorem

We are now in position to complete the reduction from the task of coin identification to the task of
subspace learning, and consequently conclude Theorem 5.

Let A be a subspace learner whose sample complexity is m(d, k, r = d, ε). We describe an
algorithm B for coin identification (with parameter α) which uses A as a subroutine. To this end,
we shall provide a (randomized) map between the input of B to the input of A. These inputs have
the form of training sequences, which will be denoted by Ssubspace and Scoins, respectively. For
each j ∈ [k], the pair (j, 1) is associated with uj or −uj with equal probability. The pair (j, 0)
is associated with uj+k of −uj+k with equal probability. Clearly, the sequence provided to A
is generated according to the distribution discussed in the proof sketch of Theorem 5. Given an
accuracy parameter ε̃ ∈ (0, 1/64) for B, we will require accuracy ε = ε̃/2 from A. To complete the
reduction, we will specify how the output of B is determined using the output of A.

For each j ∈ [k], the output hypothesis returned by B is defined by

h(j) =

{
1 θj > θj+k

0 otherwise
.

Denote the set of identified coins by J (as in Lemma 10). Observe that each coin that is not identi-
fied, adds α/k to the relative error of B. It follows from Lemma 10 that

err(B(Scoins))−min
h∈H

err(h) = α(1− |J |/k)

≤ 2

(
L(A(Ssubspace))− min

Π∈Pd
k

L(Π)

)
. (14)

If m ≥ m(d, k, r = d, ε), then the right-hand side of 14 is at most 2ε = ε̃. The proof is completed
by applying Theorem 11 (with α = 8ε̃).

Appendix B. Extending Lemma 9 to r > 2

We will now extend the proof of Lemma 9 to any (even) r > 2. Fix an iteration i, and denote
Ĉ = Ĉi,W = Wi. We have

Ei〈W, Ĉ2〉 =
4

r2

 r/2∑
j=1

Ei〈W, Ĉ2
j 〉+

∑
j 6=t

Ei〈W, ĈjĈt〉

 .

From the case r = 2, we already know that the term Ei〈W, Ĉ2
j 〉 is at most dk. Fix some pair j 6= t.

Note that ĈjĈt 6= 0 if and only if (at least) one of the indices sj , qj is equal to one of the indices
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st, qt. Hence,

Ei〈W, ĈjĈt〉 ≤ 2
∑

(s,q)∈[d]2

p2
s,q(Ws,s +Wq,q)

x2
sx

2
q

4p2
s,q

+ 4
∑

(s,q,q′)∈[d]3:
q 6=q′

ps,qps,q′Wq,q′
x2
s|xq||x′q|

4ps,qps,q′
.

The first term can be bounded as follows:

2
∑

(s,q)∈[d]2

p2
s,q(Ws,s +Wq,q)

x2
sx

2
q

4p2
s,q

=
2

4

∑
(s,q)∈[d]2

(Ws,s +Wq,q)x
2
sx

2
q

=
2

4

〈
(Ws,s +Wq,q)(s,q)∈[d]2 , (x

2
sx

2
q)(s,q)∈[d]2

〉
≤ 2

4
‖(Ws,s +Wq,q)(s,q)∈[d]2‖∞‖(x2

sx
2
q)(s,q)∈[d]2‖1

≤ 2

4
· 2 = 1 .

The second term can be bounded as:

4
∑

(s,q,q′)∈[d]3:
q 6=q′

ps,qps,q′Wq,q′
x2
s|xq||xq′ |
4ps,qps,q′

≤ 4 · 1

4

∑
s∈[d]

x2
s

 ∑
(q,q′)∈[d]2

|Wq,q′ | · |xqxq′ |


≤ ‖W‖tr‖xx>‖sp
≤ k .

Combining the above, we obtain

Ei〈W, Ĉ2〉 =
4

r2

[r
2
dk +

r

2

(r
2
− 1
)

(k + 1)
]

≤ 2dk

r
+ k + 1

≤ 2dk

r
+ 2k

=
2k(d+ r)

r
.

Appendix C. The Price of Partial Information is at Least Linear

Theorem 12 Let k = 1. Then, the sample complexity of subspace learning is bounded below by:

m(d, k = 1, r, ε) ≥ Ω

(
d

rε

)
.

Proof Let ε ∈ (0, 1/4), and let A be a bandit subspace learner. For each s ∈ [d], we define a
distribution Ps as follows. The zero vector is drawn with probability 1− cε (where c > 2), and the
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vector es is drawn with probability cε. Note that E[xx>] = cε ese
>
s , and thus the optimal projection

is given by Π? := ese
>
s .

We next show that a successful subspace learner must identify the distribution. Let Ps be a
concrete distribution. Denote by Π̂ = ûû> the output of the learner. Define θs = u2

s. It can be
easily seen that if L(Π̂) − L(Π?) < ε < cε/2, then θs > θq for any q 6= s. That is, a successful
subspace learner must identify the index s.

Next we observe that if the size of the sample is at most o
(
d
rε

)
, then with a non-negligible

probability, all the observations made by the learner are equal to zero. It follows that there exists a
distribution Pj for which, E[L(Π̂)− L(Π?)] > cε/2 > ε.

Appendix D. Decomposing Elements in Cdk into a Convex Combination of Elements
From Pdk

In this part we detail the decomposition procedure mentioned in Lemma 6. For a symmetric d × d
matrix A, we denote its eigenvalues by λ(A)1 ≥ . . . ≥ λ(A)d. For convenience, we define two
subroutines. The procedure sort(x, s) returns a set of s indices, corresponding to the s largest values
of x. Given a vector x ∈ Rd, the function diag : Rd → Rd×d returns a diagonal matrix X with
Xj,j = xj .

Algorithm 3 Decomposition Procedure

Input: W ∈ Cdk = conv(Pdk )
perform eigendecomposition W = Udiag(λ(A))U>

λ := k−1(λ(A)1, . . . , λ(A)d)
i := 1
repeat
J := sort(λ, k)
ci := k−1

∑
j∈J ej

s := minj∈J λj
l := maxj∈[d]\J λj

βi := min
{
sk,
∑d

j=1 λj − lk
}

λ := λ− βici
Πi := Udiag(kci)U

>

i := i+ 1
until λ = (0, . . . , 0)
For each j ∈ [i− 1] choose A = Πj with probability βj

It has been proved by Warmuth and Kuzmin (2008) that the loop inside Algorithm 3 repeats at
most d times, and decomposes W into a convex combination

∑
βiΠi of elements from Pdk .

19



GONEN, ROSENBAUM, ELDAR AND SHALEV-SHWARTZ

Appendix E. Covariance Estimation with Missing Entries

Corollary 1 in Lounici (2014) provides bounds under the assumption that the instances are drawn
from a sub-gaussian distribution (see assumption 1 in Lounici (2014)). This assumption is weaker
than our boundedness assumption. Translating the results to our notation yields:

Lemma 13 Givenm partial observations, let Ĉ be the unbiased estimation constructed by POPCA.
Let λ > 0 be a parameter.

C̃ := ˜C(λ) = argmin
S∈Sd+

{‖S − Ĉ‖2F + λ‖S‖1} ,

where Sd+ is the set of symmetric positive semi-definite d × d matrices. Then, for a suitable choice
of λ, with probability at least 1− 1/(2d), we have

‖C̃ − C‖F ≤
√

inf
S∈Sd+
{‖S − C‖2F + c1λ2

1(C) · tr(C)

λ1(C)
· d

2

r2m
· rank(S) · log(2d)} ,

where c1 is a constant and λ1(C) is the leading eigenvalue of C.

Substituting m =
⌈
(d/r)2 · k

ε2

⌉
from Lemma 2 into the above bound, we obtain that the RHS is at

most √
inf
S∈Sd+
{‖S − C‖2F + c1λ2

1(C) · tr(C)

λ1(C)
· ε

2

k
· rank(S) · log(2d))} .

This bound is always worse than our bound (i.e., larger than ε/
√
k).
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